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Abstract

The goal of this report is twofold. Firstly, we introduce in chapter 1 the
reader to electricity markets and the Dutch APX in particular. After that
in chapter 2 we discuss available models for the spot electricity price in the
literature. Secondly, we introduce a model which captures both spikes and
mean-reversion, and price an European put option under this model.

We model in chapter 3 the spot electricity market as a double exponen-
tial jump diffusion process, originally due to Kou & Wang in [Kou0l]. In this
report we extend their work by making the process mean-reverting. To price
the option we derive a backward parabolic partial integro-differential equation.
In chapter 4 we give two numerical methods to solve this equation: a Fourier
expansion method and a combination of the Finite Difference and Finite El-
ements method. The parameters of our model are estimated in chapter 5 on
daily average APX-prices by means of matching the empirical to the theoretical
conditional characteristic function. We conclude in chapter 6 with an overview
of the results.



1 Introduction

In this section we will give an introduction to electricity markets and their spot
prices. We start with the deregulation of electricity markets with particular
emphasis on the Dutch situation. After that we discuss how spot electricity
prices are set in the Netherlands and how energy modelling differs from tradi-
tional financial modelling. Examples of Dutch spot electricity prices are given
in the last paragraph where we also discuss the characteristics of spot electricity
prices.

1.1 Deregulation of electricity markets

Electricity markets all over the world are starting to become deregulated. The
earliest countries to deregulate their electricity markets were Chile (1982) and
New Zealand (1987), closely followed by the United Kingdom (1990), Norway
(1991) and Argentina (1991).

In EU directive 96/92, see [EP97], the European Union set out the require-
ment to open up the electricity supply markets. It stated that the market should
be open in 1999 for customers with an annual requirement of 40 GWh per year.
This was to be reduced to 20 GWh per year in 2000 and 9 GWh in 2003. To
speed this up, there is an EU-proposal, see [EP01], that the electricity supply
market should be open totally by January 2005.

However, deregulation is done in many different ways. Around the world
there are different market and ownership structures. In general governments
do deregulate the generation of power, while major parts of the transmission
and distribution of energy remain regulated. The Dutch transmission and major
parts of the national grid is managed by TenneT, a state owned company. Essent
and Nuon are examples of companies which own small parts of the grid. Essent
is in a unique position in the Netherlands as it is a vertically integrated firm
combining generation, transmission, trading and retail.

The idea of complete privatization of the distribution network has unsuccess-
fully been tested in the United States. Recent failures have caused the system to
collapse and the United States is returning to a regulated distribution network.

Deregulation in the Dutch energy market is done in three phases. In the first
phase in 1999 big (phase 1) customers got the freedom to choose in purchasing
electricity. The second phase in 2002 made it possible for medium customers
to choose whereas the households get this freedom only if they choose for green
energy. The final phase in 2004 will lead to freedom for all the customers.

The basic goal of deregulation in the Netherlands was cost reduction for
the end user. It was believed that the generation of electricity would become
more efficient and thus a cost reduction would be achieved compared to the
completely regulated market. Some result of deregulation in the Netherlands
will become clear from figure 2.

Due to deregulation, trading of electricity has become common practice as
has always been the case for trading of commodities. For commodities a lot of
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Figure 1: APX supply stack for 17-01-2003, hour 14. Note prices are in a log
scale

literature has been developed, which however cannot be applied directly to the
electricity market. This is explained subsequently.

1.2 Spot electricity prices

In the Netherlands short term trading is done at the Amsterdam Power Ex-
change (or APX) which is a day ahead forward market. We will denote the
APX price by the spot price. The Dutch spot electricity price is set by Ten-
neT after bids from all generators. TenneT collects prices and volumes from
generators and matches it to the actual demand for every hour of the day. In
this way a supply stack appears as in figure 1. The supply graph is sloping
upwards, while the demand graph is sloping downwards. The intersection of
the two graphs gives the spot price, which in this case is 28.28 Euro per MWh.

On the supply side we can classify the generating units in base load, mid
merit and peak load by the costs of running. Base load units usually run 24
hours a day, while peak-load only run if other units fail.

On the demand side most interesting is the long horizontal part in the middle
of the graph. It means demand can grow from 1200 to 3200 MWh in case of
relative small price changes. It can be explained by the specifics of the Dutch
generation park. If the spot price is low enough (that is: under the cost price
of a plant plus compensation for shut down and startup), the producer rather
shuts down his plant than risking a failure. In the Netherlands we indeed have
several gas plants with these features.

Besides this price dependence demand is driven by the heating and cooling
needs of consumers. So, besides seasonal (predictable) changes in the weather,



unpredictable day to day weather changes play a major role in the electricity
price.

Looking around the world we observe different market and ownership struc-
tures as well as different weather conditions and generation parks. Still there are
striking similarities between the electricity prices. Del Buono offers in [DelB00]
a comparison between electricity markets in Spain, Australia, Norway, Canada
(Alberta) and the United States (California). He argues there characteristics of
electricity prices are due in most part to the physical characteristics of electricity
rather than market design.!

The main difference between commodities and electricity is the non-storability
of electricity: it is hard and expensive to store on a low scale and as far as we
know impossible on industry scale (disregarding the limited storage one can
achieve with hydro plants, which are not available in the Netherlands.) More-
over, to keep the network functioning there is a need for balance between supply
and demand which, in combination with the lack of inventories, leads to volatile
spot prices and quick jumps in the spot price. If we combine this fact with the
seasonal patterns of electricity prices, it is intuitive that modelling the electric-
ity market is complicated. Moreover, option pricing will encounter problems as
most arbitrage arguments are based on storage. This will become particularly
clear in section 3 where we discuss our spot electricity model.

The introduction of the spot market meant a creation of an underlying for
power derivative contracts. In the Netherlands most contracts are forwards,
which are traded OTC. Besides forwards, a variety of European and Asian
options are traded. In these contracts we distinguish between a whole day
delivery (or base load), special business hours (07 to 23 or peak load) and
specific hours. Specific hours are traded only a few days in advance, while base
load and peak load are traded a few years out.

1.3 Characteristics of electricity

Within the electricity market we observe a mean-reversion effect in the spot
prices towards a level slightly above production costs. This effect can, for long
lasting events, be attributed to changes in supply due to a high price (increase
production) or low price (decrease production). Short lasting events can simply
stop (e.g. a plant starts working again) and a return to the standard level is
achieved.

Besides this mean-reversion effect there are factors as weather and produc-
tion failures of a producer, which have a short lasting but major impact on the
price level. For this reason we observe within the electricity market large jumps
in the spot price.

The Dutch electricity market is known for frequent and high spikes in com-
parison to most other electricity markets. To show the order of price movements
we present here a few representative graphs from the APX.2

1Del Buono offers a supply stack for Spain where demand does not show a horizontal line
like in the Dutch situation. This can be attributed to the design of the Spanish market.
2APX provides all data freely on their website: www.apx.nl
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Figure 2: APX hour 16. Note prices are truncated at 150 Euro

In figure 2 we show a result of deregulation. From 1-7-2000 until 1-1-2001
the market was still more or less regulated. The date 1-1-2001 is clearly visible
as the day the market started to move more intense. Since that date there is
a higher variance and the price drops regularly under 30 Euro per MWh. Note
that this graph is created by taking a single hour (hour 16) per day for all days.

In the same figure we can see that the market behaved quite differently in
2001 and 2002. Taking a closer look at the recent year is done in figure 3a
which shows a base load picture of the year 2002 with average prices per day. A
frequency plot of the same data is given in figure 3d. Immediately it is clear that
the distribution is not symmetric and has a fat right tail. The prices are not
moving according to a yearly pattern, possibly indicating a non-mature market.

There is a strong predictable effect in spot electricity prices through the day
as we can see in figure 3c. Hourly data from the week 15-21 April 2002 shows
a big peak around noon and a smaller peak around 18:00 hours. Prices are
consistently lower for the night: the base load units have to run and the unsold
portion of the generated electric energy must eventually be damped.

Finally we show a predictable effect in spot electricity prices through the
week. In figure 3b we take a closer look at data from April 2002, where we used
the average of the APX base load price per day to filter out the daily pattern.
We see the price drops in the weekend with Sunday’s price just a little lower
than Saturday’s price.

In this project we are looking for a suitable model for the spot electricity
prices in the Netherlands. From the above we conclude our model should include
mean-reversion and jumps.
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2 Overview of models for electricity prices

Within the literature on modelling electricity prices there are two different ap-
proaches. One invokes a fundamental analysis describing market behavior via
the available supply and demand. Within electricity markets supply and de-
mand must be equal and one can find an equilibrium price. The other, which
we pursue here, is based on a quantitative analysis, which describes market
behavior via mathematical methods and statistical techniques.

In this section we give an overview of models which have been proposed
in the literature. We start with diffusion models after which we discuss jump
diffusion models in detail. In paragraph 2.3 we discuss the regime switching
models and in paragraph 2.4 we mention more general models containing non-
constant volatility and several underlying factors.

In paragraph 2.5 we use criteria like mean-reversion, jumps and computa-
tional ease to make a choice between all models for the spot electricity price.
Our choice will be to develop a mean-reverting version of the double exponential
jump diffusion model originally due to Kou & Wang in [KouO1]. To describe
such a model we need the Ito calculus for compound Poisson processes, which
will be discussed in the last paragraph of this section.

2.1 Diffusion models

The common starting point for modelling usual assets is the Geometric Brown-
ian Motion (or GBM) model. It is quite reasonable for usual assets and simple
enough to lead to analytical formulas. It describes the change in price dS as
follows:

dS(t) = uS(t)dt + o S(£)dW (t) (1)

where p and o are constants denoting the drift rate and volatility, and W a stan-
dard Brownian motion. One can show that S is lognormally distributed with a
variance growing linearly with time. As we observe a bounded variance of prices
in the electricity market and a long term mean this model seems not appropriate
for electricity. As noted in the first section, within electricity markets there is
a need for mean-reversion in the prices towards some kind of equilibrium level.
A natural extension of the GBM model is the geometric mean reversion model
(or GMR) model.

dS(t) = kla —In S(¥)]S(t)dt + o S(t)dW (¢) (2)

where x the rate of mean reversion, « is the logarithm of the long term mean
and o is the volatility.

Both the GBM and GMR models are formulated in a log-normal setting,
which prevents prices from becoming negative. Besides this formulation models
are also formulated in a normal setting. Mean-reversion models can then be
formulated as



dS(t) = w[a — S(t)]dt + o S(t) dW (¢) (3)

where @ is the long term mean and 7 controls the price-dependency of the
volatility. For the case v = 0 we get back to the simplest mean-reverting model
known as the Ornstein-Uhlenbeck model:

dS(t) = w[a — S(t)]dt + odW (t) (4)

One of the problems of this model is that prices can become negative, which
we do not observe in the electricity market. In the case v = 1 prices are non-
negative and we have price proportional volatility as investigated by Del Buono
in [DelB00]:

dS(t) = kla — S(t)]dt + oS ()dW (¢) (5)

Del Buono found this model to be superior to the models in (1), (2) and (4) by
comparing their distributions with empirical ones in the United States (Califor-
nia), Spain, Australia, Canada (Alberta) and Norway.

Another special case known from the modelling of the term structure of
interest rates is the case v = % It is better known as the Cox-Ingersoll-Ross

(or CIR) model:
dS(t) = kla— S(t)]|dt + o/ S(t)dW, (6)

2.2  Jump diffusion models

An extension of the above class of models is the one that introduces jumps into
the price process. These models reflect the fact that we do see discontinuities in
the price process coming from e.g. an unplanned outage. Intuitively one would
say discontinuities will become more important for short term behavior as price
changes play a larger role then. This also comes out in a comparison by Barz
in [Barz99] who showed that adding jumps to the GMR model (compared to
GBM, GMR and GBM with jumps) is most appropriate for modelling short
term electricity price changes via a log-likelihood comparison and economical
justification. However, he notes that GMR without jumps better characterizes
the long term distribution of prices near their mean than GMR with jumps.
This can be attributed to the following: including jumps gives a better fit to
extreme events of low probability, which leads to a decrease in k.

To extend the class of diffusion models the common choice is a compound
Poisson process. In general one can say the Brownian motion takes care of a
continuous noise, while the compound Poisson process takes care of discontinu-
ities. A mixture of a compound Poisson process and a Brownian motion can
thus provide us a process containing both random noise and jumps.

Jumps are often modelled by a compound Poisson process where the size
and timing of the jumps are independent. The first jump diffusion model is
from Merton in [Mert76] who draws the jump size from a normal distribution.



Kou and Wang work in [Kou01] on another jump diffusion model where the
jump size is drawn from a double exponential distribution. This model can
explain asymmetric return distributions which are skewed to the right, and the
volatility smile. These are two characteristics of spot electricity prices observed
in the market.

Jump diffusion models have also been applied to model forward curves (see
e.g. [Glas03]) and bond markets (see e.g. [Bjor97]).

2.3 Regime switching

A model quite similar to jump diffusion is the model of regime switching. Ac-
cording to this model there are different states a process can be in. The two-state
regime switching model classifies the process in an ‘abnormal’ (high price) and
‘normal’ (low price) state with a possible transition between them. In other
words: it is a model which identifies switching regimes. Three references on
these models are [Hami90], [Deng99] and [Khol01].

The link with jump diffusion models becomes clear if we let the regime
switching have small duration in a high state which then can be compared to a
jump. Other extensions the regime switching model can bring are the following.
Firstly regime switching can allow to have two totally different underlying pro-
cesses in the two states. This corresponds to unnatural behavior in a high state.
Regime switching can also capture the distinction between different plants as in
peak load, mid-merit and base load by introducing three different regimes.

2.4 Other models

Besides the diffusion, jump diffusion models and the regime switching mentioned
above, there are several other models available in the literature. In all the above
models volatility is assumed to be constant. Relaxing this assumption gives rise
to time and price dependent volatility.

Modelling of the evolution of the locally deterministic volatility surface in
a continuous setting is done by Dupire in [Dupi94]. More popular however is
the stochastic volatility model as proposed by Heston in [Hest93]. His model
(containing two different standard Brownian motions which are correlated) is
the following;:

ds(t) uS(t)dt + /v(t)S(t)dW*(t)
dv(t) = k[0 —v(t)]dt + o/ v(t)dW?(t)

An extension of this is the stochastic volatility model with time changes given
by Carr, Geman, Madan and Yor in [Carr03].

A generalization of the locally deterministic and stochastic volatility models
is the affine jump diffusion model. In that model drift, covariance matrix and
jump intensity are supposed to be affine. In general A is affine with respect to
X if A=cq(t) + c2(t)X for some constant ¢1(¢) and co(t). An important work
regarding affine jump diffusion is [Duff00] by Duffie, Pan & Singleton. The affine

10



jump diffusion also allows for multi-factor models. Deng for example describes in
[Deng99] models with stochastic volatility with two different underlying factors
and two kinds of jumps.

Another known two-factor model is from Pilipovic in [Pilo98], who allows
the long term mean to change over time. Thus the short term and long term
behavior are different. A major drawback of this model is the need for very long
time series to estimate the long term parameters. This kind of models might be
more appropriate as a forward model than as a spot model.

Finally we want to name some advanced models from asset price modelling.
Currently these are hardly applied in electricity modelling, but it might pay
off to take a closer look at them. We name Variance Gamma, Normal Inverse
Gaussian, Generalized Hyperbolic and Finite Moment Logstable. We will not
go further into these (so called Lévy process) models and refer the interested
reader to [Lewi01].

2.5 Choosing a model

In this report we are looking for a mean reverting spot electricity model which
captures spikes correctly. From the mentioned models we believe there are three
models which show spiky behavior: price dependent volatility, jump diffusion
models and regime switching.

The price dependent volatility gives spikes, but does not have the discon-
tinuities as we do observe in the spot price. Both jump diffusion model and
regime switching do exhibit this feature. Considering the time for this project,
we made the choice to focus the research on jump diffusion.

We assume in our modelling the volatility ¢ to be constant. This assumption
simplifies the calculations considerably. Moreover, with the jumps we introduce
an extra source of uncertainty leading to a decrease of o as the total uncertainty
is split between the Brownian motion and the jumps.

Within the jump diffusion models we have chosen the double exponential
jump diffusion model originally due to Kou & Wang mainly for its computational
ease. Kou & Wang showed in [Kou01], that their model can give closed form
solutions for path dependent options like barrier options and lookback options.
This type of results is hard to derive for other models. That they can be obtained
for the double exponential model is mainly due to the fact that exponential
distributions are memoryless. Using two exponentials makes it possible to create
asymmetric distributions as we saw in figure 3d.

We like to note here that the process Kou & Wang worked on is not mean-
reverting, while this is a necessary feature of spot electricity prices. We have
thus decided to include mean reversion in their setting.

2.6 Stochastic calculus: a digression

In the next chapter we will describe our model using ideas from stochastic calcu-
lus. In this paragraph we show how to extend stochastic calculus for Brownian
motion to compound Poisson processes. We refer the reader unfamiliar with

11



stochastic calculus to Etheridge, [Ethe02]. Here we provide a workable version
of the Ito formula for compound Poisson processes. This Ito formula is a special
form of the generalized Ito formula.

Theorem 1 (Ito formula for compound Poisson processes) Suppose X (t)
satisfies the stochastic differential equation

AX () = p(X (1), t)dt + o (X (t), )W (t) + dN(t) (7)

where u(-,-) and o(-,-) are adapted processes to the filtration Fy, W (t) is a stan-
dard Brownian motion, N(t) is a non-compensated compound Poisson process
with arrival rate X and the jump size is drawn from a distribution having a
density of g(-).

If f(X(¢),t) is a continuous function of which %, % and % do exist then
f(X(t),t) satisfies

df (X (t),t) = dfe(X(t),t) + df;(X (1), t) (8)
where
df(X(t),t) = [({)f + u% + ;0'2293];} dt + ag—idW(t) (9)

ot
df; (X (). 1) [ | sty - f<x>] AN (1) (10)

where in (10) f(x) denotes the function value after the jump and f(x_) the
function value before the jump.

A full proof of the generalized theorem can be found in Tkeda & Watanabe,
[Iked81]. A less technical approach to the above theorem can be found in
Etheridge, [Ethe02], who gives the Ito-formula for Poisson processes with a
heuristic proof.

Example: Doléans-Dade exponential formula

Here we give an example of the use of the Ito formula and see how to check
that a process is a martingale. The example is partially taken from [Ethe02].
Suppose Z(t) satisfies the stochastic differential equation

dZ(t) = A(1 — e)dt + dN (%)

where N (t) is a non-compensated compound Poisson process with arrival rate
A and fixed jump size v. We define L(Z(t),t) = ) and will show that it is a
martingale.

According to the Ito formula in (8) the function L(Z(t),t) satisfies

dL(Z(t),t) = dL.(Z(t),t) + dL;(Z(%),t)

12



To find the differential for the first part we set © = A(1 —¢e”) and ¢ = 0 in
(9) leading to

ALe(Z(1),1) = M1 — e")L(Z(1), t)dt

If a jump occurs, the process jumps from Z(t) to Z(t) + v. The density g(-)
is in this case a Dirac-delta function §(y —v) and the differential in (10) becomes

dLj(Z(t),t) = [L(Z(t) + v, t) — L(Z(t),t)] N (t)
Now observe
L(Z(t) + v,t) = 2O+ = eV L(Z(1),1)
to find

dL(Z(t),t) = L(Z(t),t)(1 —e’) [\t — AN (t)]
= L(Z(t),t)(e” — 1)dM (1) (11)

where we have introduced dM (t) = dN(t) — Adt. It can be shown this compen-
sated Poisson process M (t) is a martingale, which implies L(Z(t),t) is also a
martingale.

The process L(Z(t),t) we have discussed here is an example of a Doléans-
Dade exponential.

13



3 A jump diffusion model

In this section we specify our spot electricity model. The model is based on
specifying the jump density in an affine jump diffusion model to be double
exponential. This kind of model has been proposed before by Kou & Wang in
[Kou01]. We include here a mean-reversion term and derive a parabolic partial
integro-differential equation and an appropriate initial condition for the option
price. In paragraph 3.3 we explain our underlying assumption for option pricing.
Finally, in paragraph 3.4 we discuss how to resolve the risk inherent in jump
diffusion models.

3.1 Specification of the spot electricity model

Within jump diffusion models one assumes that jumps arrive according to a
Poisson process where jump sizes are taken from an unknown distribution. In
[Mert76] the jumps are drawn from a normal distribution. We will assume here
like [Kou01] that jumps are drawn from a double exponential distribution and
that if a jump occurs the spot electricity price, denoted by S, changes from S;
to StY

Let us first recall the probabilities that a Poisson event will occur in an
arbitrary small time interval of length At. If events arrive according to a Poisson
process with mean arrival rate A, the probability of exactly one jump event is
AAt+o0(At).2 The probability that no jump event will occur is 1 — AAt+o(At),
while the probability that more than one jump event will occur is o(At).

Let us start by specifying our spot electricity model by giving the stochastic
differential equation (or SDE)

Ny

B o~ Syt + oWy +d > (Vi — 1) (12)
St i=1

where k, a and o are assumed to be constant, IV; is a Poisson process with inten-
sity A and {V;} is a sequence of independent identically distributed non-negative
random variables such that Y = logV has an asymmetric double exponential
distribution with density

fy (y) = pme” "Y1 y>01 + qn2e™Y 1y <0y (13)

Imposing the restrictions n; > 1 and 72 > 0 ensure the process to have finite
expectation, see (17). Assuming p > 0 and ¢ > 0 makes it possible to interpret
parameters p and g as the probability of an upward, respectively downward,
jump in the price. The total probability mass does equal 1

%) ) 0
/ fy (y)dy = p/ nme” Mdy + q/ nee™Vdy =1
oo 0 —o00

implying that parameters p and ¢ add to 1.

[0 _

3Here o(f) implies lima;_.o N =

14



Furthermore we assume all sources of randomness, Wy, N; and Y; are inde-
pendent. Thus the size and time of a jump are assumed to be independent and
we call Zivz’l(Vl — 1), or Z; in short, a compound Poisson process.

3.2 Option pricing on spot electricity

In this report we want to price a European put option on the process S; given in
(12). With this option one is allowed to sell spot electricity for a certain strike
price K at a specified moment 7" in the future, but does not have the obligation
to sell. In the following proposition we state our approach to find the price,
denoted by (X, t), of this contract. Here X; = In S; denotes the logarithm of
spot price S;.

Proposition 1 The price, denoted by (X, t), of a European put option with
strike 1 and time to maturity T is the unique solution to the following equation*

81& Y 1 ,0% e B
5y et =03+ 2ot Tl s [ wwpw-aay =0 ()
with the initial condition
1—¢* <0
e (15)

At maturity, ¢ = T', the option price is max{1 — St,0}. If St < 1, one buys
electricity on the spot market and sells it under the contract. In other cases one
can refrain from selling. After the transformation X; = In.S; we have (15).

Before maturity, t < T', determining the value is non trivial. Let us assume
the function ¥(X,t) is twice differentiable in x and once differentiable in ¢, to
be able to apply Ito calculus. It yields the expected change in the value of the
option, denoted by Edi(Xy,t), is given by

0 1o} 1,0
Bdu(Xi.) = G +nla” =) 30 4 32T x | [ wla k) iy - v
where we have introduced
. X o?

and AC is the compensator with ¢ = E[V] — 1 given by

P q72
fy(y)dy —1= —"— 4 22 17
(= / Iy (y)dy -1ty (17)

Note the convolution can be rewritten to get the function ¢ (y,t) inside the
integral via

/ T @t 0 fr (y)dy = / ¥ Oy (y — 2)dy

4In order to save space we sometimes drop the arguments of (X¢,t) and simply write
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To arrive at (14) we need an extra assumption, which we take to be a zero
convenience yield. In the next paragraph we will discuss this assumption in rela-
tion to the Black & Scholes assumption. Our assumption implies Edy(X;,t) = 0
leading to (14).

If we introduce the generator L and convolution K as follows:

LyY(X,t) = k(a® — x)g—i} + %02% -\ (18)
Kot = A [ ol sy - oy (19)

then (14) can be written in short as
(L + K)p(Xe,t) + %:f =0 (20)

This is a forward parabolic partial integro-differential equation (or PIDE)
describing the price of an option in the special case of a double exponential
jump diffusion model. One can invert time and get a backward PIDE instead of
a forward PIDE by defining 7 = T — ¢. It leads to a% = 78% and the backward
PIDE is in short

o

(L+ K)p(X,,7)— 5 = 0 (21)

3.3 Convenience yield

To derive a pricing equation for the European put option in Proposition 1 we
have made the assumption of a zero convenience yield. This approach is funda-
mentally different from the Black & Scholes assumption.

Comparing our equation with the Black & Scholes pricing equation (see e.g.
[Bjor98, theorem 6.7]), one can observe the term 7 (Xy,t) in their equation,
which we take to be zero. In the Black-Scholes model the price is determined
by an arbitrage argument between a risk free bond and a risk free portfolio
containing the option and the underlying. Omne of the assumptions for this
argument is that one can store the underlying, which in the case of electricity
is impossible on industry scale.

Our approach wants to stress there is no possibility to create a risk free
portfolio. With no possibility to hold this portfolio, one assigns an arbitrary
convenience yield to it, which we take to be zero.

3.4 Risk free versus risk based pricing

The virtue of the Black-Scholes model is that one is able to uniquely price an
option, that is the model is complete. One can transform the measure from the
underlying objective probability measure (which is used to observe the price of
the underlying) to a risk-neutral measure (which is used to price options).
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Transformation of a measure into an equivalent measure is known as a Gir-
sanov transformation. The main ingredient in this transformation is the no-
tion of the Radon-Nikodym derivative. Girsanov transforms are treated by e.g.
Etheridge in [Ethe02, theorem 4.5.1 and theorem 7.3.5]. The Girsanov transform
for the Black & Scholes model states that the drift and the Brownian motion of
the process will change, whereas the volatility parameter stays the same. If we
include jumps and get a jump diffusion model the intensity parameter will also
change.

The jump diffusion model introduced above is not a complete model as there
does not exist a unique equivalent measure. From the Girsanov transformation
for jump diffusion models (see [Ethe02, theorem 7.3.5]) we see both the drift and
intensity parameter will change, while the other parameters remain the same.
However, the exact transform is specified by two unknown, so called change
of measure, parameters. In the Black & Scholes model, containing only one
such parameter, the parameter is found via the arbitrage argument discussed
above leading to a drift . With our assumption the drift parameter remains
the same and only the intensity parameter will change during the Girsanov
transformation.

In the literature several assumptions are made to come around the specifi-
cation of the other change of measure parameter. The original jump diffusion
model by Merton was specified by the assumption that jump risk is diversifiable.
With this assumption he did assume that jump risk equals zero.

A different approach is to leave the concept of risk neutral pricing and to use
risk based pricing. Often one assumes the martingale measure is optimal with
respect to some (arbitrary) utility function. An utility function is the mathemat-
ical representation of the risk preferences of an investor. Which condition should
be implemented is arguable. Examples include Lewis, who opts for the power
utility function in [Lewi01], Schweizer, who works on mean-variance hedging in
[Schw92], and Kallsen, who opts for local utility in [Kall99]. Some support for
the power utility function comes from Gerber & Shiu, who in [Shiu00] note the
Esscher transform can be compared to a power utility function. If we apply the
Esscher transform, the density process depends on the current price and not on
the entire price history. Raible conjectures in [Raib00] the Esscher transform is
under certain technical conditions in fact the only transformation which shows
this behavior.

Also it is possible to calibrate the model to observable market prices. Tak-
ing a quoted option price, we can find the correct, or implied, jump intensity
A according to the market. Barz proposes a method to use forward prices
(see [Barz99, paragraph 5.2]) to find an implied intensity parameter. Using
the forward dynamics one can avoid to model the effects of storage costs and
convenience yield.

A new approach seems the idea of using an import option to calibrate the
model. It acknowledges there is a possibility to flow electricity from one market
to another. In the Netherlands it is for example possible to buy the right to
import electricity from Germany. If the price difference between the markets is
high enough, one can exercise the option. A drawback is that the transportation
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channel is limited and arbitrage reasoning might be flawed.

Our approach will be to calibrate the model with a quoted option price.
It avoids choosing an arbitrary utility function, acknowledges jump risk and is
relatively easy to perform. For this purpose we looked at the most liquid option
available on the Dutch spot electricity market, which has strike 30 and costs
around Euro 2.50. With this the market tells us the long term option price
equals % ~ 0.08.

Before we can correctly price the European put option, we will need to
find a solution to our pricing problem stated in proposition 1. With a general
solution and a correct estimation of the different parameters for our model, we
can estimate the implied intensity A. In the following chapter we take the first

step and present two different numerical methods.
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4 Numerical methods

In this section we discuss two methods to find a numerical solution to our pric-
ing problem. Instead of the forward PIDE in (14), we will solve the equivalent
backward PIDE in (21) given the initial condition in (15). For ease of presenta-
tion we assume for the remainder of this report the jump density function to be
symmetric. In particular this means we take p = ¢ = % and n = n; = 1. Both
described methods do not make use of this assumption and extend without any
problem to other jump density functions. In the last paragraph we compare the

two methods where Fourier expansion comes out as the better.

4.1 Fourier expansion

In a similar situation [Barz99, p. 21] conjectured a solution to the PIDE in (21)
as in the following proposition:®

Proposition 2 A solution to the PIDE is given by
V(X 7) = eA(T) =X B(7) (22)

This set of solutions is due to the affine structure of our PIDE as noted by
Duffie, Pan & Singleton in [Duff00]. Using the proposition it will be possible to
find a solution to the PIDE. However, the boundary condition is a C°-function,
while the proposed solution is a C'*°-function. Thus the proposed solution does
not obey the initial condition around the strike, which is taken to be 1. The
approach we take here is based on a Fourier expansion of proposed solutions.

Let us first consider the convolution of the PIDE if ¢)(X,,7) is of the form
(22). We assume —n < Re(B(7)) < 1 to make the convolution convergent with
density function (13). Later we will show that this always holds. Combination
of (13) and (19) with the assumption of a symmetrical jump density gives

0 [ee)
Ko(X,,7) = %eAw)fxfB(r) ( / =By 4 / €(n+B(T))ydy>
—00 0
A x,) (23)
_ .
7 B

The partial derivatives of (22) with respect to 2 and 7, and the second order
partial derivative with respect to z, are

3

0 = BE(X.T) (24)
2

0y = B (25)
oy TOA(7) OB(T)

2= B - e (26)

5Note the conditional characteristic function given by Barz in his (3.54) does not satisfy
the two equations coming from the Kolmogorov backward equation in his (3.52)
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Substituting (23) and the partial derivatives in (24), (25) and (26) into the
backward PIDE yields:

- 2
+ X p(X-, 7) {/{B(t) + 8?@} =0 (27)

This equation should hold for all X, which implies the part dependent on
X, and the part independent on X, should both equal zero. This gives the
following system

B OA(T) , 1 An?
0 = - 5 B(1)ka* + 502B2(7) + B A (28)
0 = kB(T)+ 8?(:) (29)

Equation (29) can be integrated yielding, with integration constant g,
B(r) = qe " (30)

Inserting (30) into (28) and integrating gives, with integration constant gs,

02 2 1 KT KT
A = TL |5 (B () = ) (g —ne™) — In(gr + 7€)
o? A
+ o*B(1)-— &Bz(r) + oy In(n?e*™ —¢}) — M\ + o (31)

With these closed form expressions for A(7) and B(7) we have verified the
proposition on the form of a solution to the PIDE.

The next step is to Fourier expand the boundary condition in terms of solu-
tions to the PIDE. The Fourier series in complex form of a function f € C°°(€2)
a.e. (that is: f is almost everywhere differentiable and defined on a closed
interval §2) defined as:

0 —ornz .
Z cne L' (32)

with
L
1 [z 2mnw
=7 fl@)e T 'dx (33)

L
2

Two important characteristics of a Fourier series are that it is unique and con-
verges uniformly with respect to the norm of L?(Q), see [Simo83, p. 447]. To
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facilitate a Fourier expansion, integration constant ¢; in (30) is chosen to be
purely imaginary (compare to (33)) as follows:

2mn .
q1(n) = I (34)
Note the real part of B(7) equals zero and the assumption —n < Re(B(1)) < 7
holds for all 7. Integration constant gs in (31) is determined by imposing the
following condition
A0)=0 (35)

Note this condition sets the complex phase of (22) to zero at 7 = 0:
(X, 0) = em A

We define ¢, (X, 7) to be a solution to the backward PIDE with the given
choices (34) and (35). To find a solution we define (compare to (32))

o0

P(Xr7) = Y entn(Xr,7) (36)

n=—oo

By the superposition principle (the differential and convolution operators are
linear) the function ¢(X,,7) in (36) satisfies the backward PIDE in (21). By
construction it also satisfies the initial condition (15) and we conclude equation
(36) offers a closed form solution to our pricing problem stated in proposition
1. The constants ¢,, become in our case

1 [z 1 (0
Cp, = —/ w(amO)e‘“(")’”ch‘:—/ (1—ex)eq1(")‘”dx
L L L -z
1 1 a1 (m)L 1 (+ay(n)L
- 2 1o 895 o - (1 37
P |t - - | e

Finally, note the solution we find is a real number as the imaginary parts in
term n and —n cancel each other during the summation in (36). Let us write
Yn(xr,7) = exp(B1 +inBs) and ¢, = p1 + ip2 to see the cancellation:

ann + C_n'(/)—n = Cnﬁl [COS(TL,BQ) + iSin(ﬂﬂg)] + @ﬂl [COS(TLBQ) — Z'Sin(’flﬂz)]
= 201 [p1cos(nfa) — p2sin(nfs)]

where ¢, denotes the complex conjugate of c¢,,.

If we want to find a practical solution to our PIDE-problem we will sum a
finite number instead of an infinite number of terms. We have found 250 terms
were enough to get good convergence with the following parameters: n = 15,
k =0.20, 0 = 0.090, « = 3.33, A = 1.67.

In the last paragraph of this section we show more results of applying this
method. First, we will discuss another way to find a numerical solution.
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Figure 4: The cell centered at &€ = 2 with 6 = 1. Function p") is the line
from (1.5,1) to (2,0), function p( is the dotted rooftop intersecting (2,1) and
function p® is the line from (2,0) to (2.5,1).

4.2 Finite Difference - Finite Elements

In the foregoing subsection we have shown a way to find a closed form solution
to the PIDE in (21) by means of Fourier expansion. That solution is due to
the assumption of a very special form of the double exponential jump density.
In this subsection we discuss an approach, which works for more general cases.
The method is based upon approximation of the time derivative with the Finite
Difference method in combination with the Finite Elements method.

The first step in our approach is to use the Finite Difference method. In
this method one discretizes time in small intervals of length dr, such that time
derivatives can be approximated. Starting from the known solution (the initial
condition) on time level 7 = 0, we can make a time step to time level dr and
so forth. For a given d7 we approximate the partial derivative with respect to

time as
5’1?(9577') ~ w(l‘,T) — ¢($7T — 1)
or dr

Note that better approximations like the Crank-Nicholson approximation are
available, but we use this ‘easy’ approximation. An advanced Finite Difference
method has been applied to a jump diffusion model by Andersen & Andreasen.
They address the case of log-normal jumps for which they find a numerical
solution by means of the Alternating Directions Implicit (or ADI) method. We
refer the interested reader to their paper [Ande02, par 3.1] for a description of
this method.

Using approximation (38) we can rewrite the backward PIDE in (21) into

(38)

dr(L+ K)Y(x,7) — (z,7) = =p(z,7 — 1) (39)

The next step in our approach is to use the Finite Elements method. Let us
first introduce some notation. We look for a solution to (39) for a symmetrical
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interval in z around 0 of total length 2@Q) (also called: computational window).
The computational window is divided in N ‘cells’ of length §, thus § = % Each
cell contains by construction three different linear splines, see for an illustration
figure 4. A linear spline is a rooftop function of amplitude 1 with compact
support, meaning the function differs from 0 only on a closed and finite interval
(here of length §). We define &, to be the center of cell number n and denote
an inner product by < |- >.

The three linear splines in cell number n are named basis functions p() and
defined as follows

e pM(z,£,,6): linear spline centered at &, — g
o p(z,£,,6): linear spline centered at &,

o p3)(z,£,,6): linear spline centered at &, + g

We give the name test function, denoted by Z(zx,&.,d), to the linear spline
centered at &..
The three basis functions can be represented as:

PO = [Hiw ) - Hig—a+3)| o (40)
P600) = [H(E a4 )~ HG o) 5‘?“

+ M o= - HE o) 5”‘5‘3 (a1)
PO = [Hw ) A —r-3)| (42)

where H(x) denotes the Heaviside function defined by
0 ifz<o0
H(f”){ 1 ifz>0

Taking the inner product of test function =(z, ., §) with (39) gives
<drLy(xz,7) — Y(x,7)|E >+ < dTK¢(z,7)|Z >= — < ¢(x,7 — 1)|2 > (43)

Our approach is based on the compact support of the test function together
with the following approximation theorem:

Theorem 2 A linear combination in each cell of the three basis functions p(*)
defined above with amplitudes a'”), approzimates the solution Y(x,T) in the whole
computational window as

N 3

Dz, 1) =Y Y aPpP(z,&,,9) (44)

n=1 j=1
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More insight in this theorem can be found in [Pete98] or [Simo83].

Now let us start by finding expressions for the inner product of the different
operators with the test function. By integration by parts the second order partial
derivative in L in (18) becomes, due to the compact support of Z(x, &, d),

o o2 9% £+ _ o2 9%
/_m“(xafw(s)?wdx - /54_ H(xvgca )?aidx

ﬁaﬂm o (¢ 0E@w & 0) 0u

2 Ox ot 2 -2 ox 89&
o2 Eet3 BE(%&’ ) ’l/)
77/ or % (4)

cT2

Note the partial derivative of ¢(x, 7) with respect to « reduces in the interval

(fc - ga§c+ %) to

3

N 3
gzz 29 (2,6,,6) Zaﬂu (46)

Jj=1
Using (46) we can simplify equation (45) to
2

< o2 9? o
/ :(x,fc,é)ja—;gdx =5 (agl) —2a? + ag?’)) (47)

Due to the compact support of Z(z, ., d) the first order partial derivative in
L is equal to

et g
/ p™ (z,&.,8)k (o — ) %d:ﬁ (48)
&c_% ax

which can be simplified to

ke K W 4 9 (@) K5 KN 5y
<2£c 50 2) +gac +(£c 6 2)% (49)

Due to the compact support of E(x,&.,d) the zero order partial derivative
in L is equal to

€t g
/ P (a2, €0, 8) (M) (50)

cT2

which can be simplified to

o
-2 (0l + 4 + a?) (51)
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Combining equations (47), (49) and (51) leads to

d *d 2 )
<drLp—y|E(z,6.,0) > = (i, — 2T 47 D14 kdr + Adr) ) V)
2 2 6 12
) kédT 202
_Z _ ()
+ ( 3(1+)\d7')+ 5 6)(16
KkdT ka*dr o2
_ Z ) q®
+ ( 9 gc + B + S ) A,
_ 0 (1 + wdr + Adr)a'® (52)

12

The inhomogeneous term is similar to (50) with time 7—1. Thus (51) implies
the inner product is given by

5
= < (.7 = DIE(, &, 0) >= -5 (agm—l +4alP 7+ ag3>f—1) (53)

Owing to the convolution which couples all cells to each other, we have to
take more than three splines into account to obtain < Kv¢|Z(x, &, d) >.
Combining (19) and (44) we get:

T N

A 5.0
A/w(y,r)fy(y—x)dy = 5/ e NN "0l (y, €, 6)dy

n=1 j=1

_|_

N 3
A N
g D SO ST LA PC)

n=1j =1

By interchanging the order of integration and summation the convolution
becomes

3

N . 3
>3 / ne”=ry aif)p(”(yémé)der/ e "N "W p (y, &, 0)dy
n=1 o0

T

Jj=1 Jj=1

In appendix A we give the expression for the convolution dependent on the
relation between z, 0 and &,. From (73), (74), (75) and (76) in the appendix one
can see the convolution is a sum of factors which get smaller in exponential speed
with the distance between the position of the observation point x compared to
the center of the segment &,. We show also in appendix A how to find the
correct formulas for the inner product of the convolution with the test function
= (@, €0, ).

Note, that the linear splines which are available in two cells, p*) and p®),
are counted double in the summation of (44). The best way to circumvent this
is to solve the problem by looking at the spline amplitudes of all available linear
splines.
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Figure 5: Difference between FDFE and Fourier for N = 20 (top), N = 40
(middle) and N = 60(bottom)

Looking in the cell with center &., we get from (52) and (53) spline amplitudes
in that cell. The convolution couples all cells, such that the left hand side of
(43) becomes a function of the spline amplitudes of all linear splines in the
computational window. The right hand side of (43) is by assumption a known
value for all values in the computational window. In total there are 2N + 1
spline amplitudes, such that we need 2N + 1 equations to solve for them.

This can be done by looking exactly in the center of the 2/N 41 linear splines.
We can derive an equation in each center leading to a set of 2N + 1 equations.
For this kind of linear problems there are specialized solvers available. However,
the involved matrix is dense due to the convolution and matrix inversion takes
lot of CPU time. To give an indication of CPU time: in Maple this inversion
takes 10 seconds for N = 20 and 3 hours for N = 80.

After matrix inversion the solution is known for time level dr and we can
make another iteration. In the following subsection we will compare both pre-
sented numerical methods.

4.3 Numerical results

In this section we have developed two different ways to find a numerical solution
to the PIDE. We have implemented both algorithms, which are used to make a
comparison between the methods and to discuss sensitivity in the option price
for the different parameters.

In the Finite Difference - Finite Elements (shortly FDFE) method we have
used two discretization parameters: time step dr and amount of cells N. One
would expect the discretization error becomes smaller if we use more cells or
use a smaller time step. In the Fourier expansion method we find convergence
increasing the amount of terms included.

A comparison between both the methods is done in figure 5 where we were
interested if both methods converge to the same value. The Fourier expansion
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Figure 6: Difference between FDFE and Fourier for 1 time step dr = 0.01
(diamond) and 5 time steps of dr = 0.002 (circle)

method is used as a base and we see the FDFE method is having an error of
about 0.025. If we increase N from 20 to 40 to 60, we observe the difference
decreases, but it will not disappear with a feasible computational time.

Another way to find better results in the FDFE method is to decrease the
time step by a factor 1/¢q and then iterate ¢ time steps. In figure 6 we show
the result of taking 5 time steps of dr = 0.002 instead of 1 timestep of dr =
0.01. Instead of getting a better match, the difference gets bigger and doesn’t
disappear if we increase N: FDFE produces an unstable result.

We believe thus the FDFE is not appropriate for this parameter set. Chang-
ing the parameter set does not give better results, leading to the conclusion the
Fourier expansion method is our preferred method. Possible reasons for this
include a too simple finite difference approach in (39) and / or too low amount
of segments N and / or too high time step.

In the remaining of this paragraph we will use the Fourier expansion method
to do a sensitivity analysis. Let us first remember that we should change the
intensity parameter A according to the Girsanov transformation as discussed
in paragraph 3.4 to find a correct option price. From the most liquid option
available on the Dutch spot electricity market, we estimated the long term

option price equals % ~ 0.08. Assuming the other parameters are given

by ¢ = 0.050, k = 0.26, o* = 3.30 and n = 12, we have an implied A =
0.20-103. These parameters are found in the following section, where we will do
the parameter estimation. Comparing with the estimated parameter A = 4.27
in table 1, one can say the increase is huge.

With these parameters (including \) we have plotted in figure 7 the option
price ¥ (X, T) against X, for several time levels: 7 = {0, 1,2, 3,4,8}. For 7 =0
there is a pay-off for x < 0 like 1 — e* and no value otherwise. If there is time
to maturity there is a chance the in-the-money option might end up out-of-the-
money leading to a lower option price. In the graph we observe this decrease
in the option price if time to maturity increases. Eventually this will lead to a
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The option prices versus log prices for different time levels (t=0, 1, 2, 3, 4, 8)
1 T T T T T T T T

x=In S

Figure 7: Option price plotted against x

The option prices versus time for different log price levels (x=—4, -2, 0O, 1)
1 T

—0.2 ! ! ! !
o 1 2 3 4 5 6 7 8

Time to maturity (t)

Figure 8: Option price plotted against
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Figure 9: Contour plot: the lines show combinations of (X, 7) which lead to
the same option price

horizontal line representing the long term option price.

In figure 8 the option price ¥ (X, ) is plotted against T for several logged
spot electricity prices X. In the graph we see the option prices are similar after
one week regardless today’s spot electricity price. Up to one week the value can
change significantly. The same problem with pricing long term options under a
jump diffusion model was noted by Barz in [Barz99]. His option prices converged
in a few weeks, while ours converged in a week. Main reason seems to be that
his A is an order of magnitude 10 bigger.

If we want to observe both the influence of changing time and changing the
logged spot electricity price X, we can instead look at contour plots. In figure
9 we give 40 contour plots for the same parameters as before containing the
prices in the range of 0...4. The price difference between two contours is set to
0.1. If we are at maturity, that is the horizontal axis, there is only a pay-off
for negative values of z. For positive x we see a time-value, which for small 7
disappears. The ‘boomerang’-shape on the right hand side is hard to explain
economically. Coming towards maturity the option price can both increase
and decrease, dependent on the exact time to maturity. Barz encountered the
same phenomenon in [Barz99, figure 5.2], but unfortunately did not mention
any explanation. We investigated it by putting A = 0 where the boomerang
disappeared. So we believe the shape comes into existence with the introduction
of jumps.

To see the reaction to a change in the parameters, we have lowered the
parameters ceteris paribus (that is: keeping the other parameters constant) to
A =50 in figure 10, k = 0.20 in figure 11, n = 10 in figure 12 and ¢ = 0.010 in
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Figure 10: Contour plot for reduced A: the lines show combinations of (X, )
which lead to the same option price.

1
18 20

Figure 11: Contour plot for reduced «: the lines show combinations of (X, 7)
which lead to the same option price.
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Figure 12: Contour plot for reduced n: the lines show combinations of (X, )
which lead to the same option price.
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Figure 13: Contour plot for reduced o: the lines show combinations of (X, 7)
which lead to the same option price.
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figure 13.

An interesting result is figure 13, which is very alike figure 9: a change in ¢
hardly affects the option price. Though one would expect a small decrease in
diffusion, it turns out the very large A (compared to o) dominates the option
price. A decrease in k implies spot electricity prices are pulled back less and
leads thus to a higher diffusion. A decrease in 7 implies the jump density is less
centered around its mean and we expect more diffusion. A decrease in A\ implies
less frequent jumps and thus less diffusion.
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5 Parameter estimation

In the double exponential jump diffusion model we have introduced five different
parameters: mean-reversion coefficient x, drift coefficient a*, volatility o of the
Brownian motion, decay parameter of the jump diffusion 7 and jump intensity
parameter A\. Our goal in this chapter is to estimate these parameters.

5.1 Different estimation methods

In the literature several methods to estimate parameters of a continuous time
stochastic process have been proposed. Within statistical analysis the maximum
likelihood (ML) estimation is a preferred method, because it is consistent and
asymptotically efficient. In this method one tries to maximize the likelihood of
obtaining the real time-series. The ML estimators are those parameters, which
maximize the likelihood function (or joint density function) of the obtained
sample.

In a similar setup Barz in [Barz99, paragraph 3.4] has used ML to estimate
parameters for a jump diffusion model. Given a set of parameters, he derives
the conditional characteristic function and uses the Fourier inversion formula to
numerically determine the conditional density function. The conditional density
function serves as an input for the ML-estimation. He solves for the parameters
by iteration.

We refrain from his method for two reasons. In the first place one needs much
CPU-time as each iteration step includes numerical evaluation of an inverse
Fourier transform. In the second place we think this estimation method might
lead to more than one local maximum for each parameter.

Another approach, known as the empirical characteristic function (or ECF)
method, matches instead characteristic functions. Jiang and Knight describe in
[Jian00] an approach based on the unconditional joint characteristic function,
while Singleton in [Sing01] uses the conditional characteristic function. The
idea behind this method is to determine a theoretical characteristic function
and match it to the empirical characteristic function.

The ECF method is close to the Method of Moments (or MoM) approach.
In MoM one matches the first moments of the process, while the ECF method
matches all moments of the process. We have decided to apply the ECF method
to estimate our parameters.

5.2 Theoretical conditional characteristic function

Let us introduce the characteristic function of X7 conditional on filtration F;
as
(X4, t, T, k) = E(™¥7| Xy) (56)

It is possible, under technical regularity conditions, to characterize the form
of the conditional characteristic function as shown by Duffie, Pan & Singleton
in [Duff00, proposition 1]. If we follow Heston’s derivation of the characteristic
function in [Hest93, appendix] (i.e. apply Ito’s formula to a general conditional
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expectation to find a Fokker-Planck equation and connect it to the conditional
characteristic function) we can find the exact characterization. The following
theorem brings together these two results

Theorem 3 The characteristic function is of the following form
O(Xy,t, T, k) = exp (A(t) — Xi B(1)) (57)

It satisfies, with L and K introduced in (18) and (19), the Kolmogorov backward
equation

(L + K)$(X0t, T, k) + w —0 (58)

with the terminal conditions
AT) = 0 (59)
B(T) = —ik (60)

Finding the conditional characteristic function for the jump diffusion model,
can thus be compared to the situation we encountered in the foregoing subsec-
tion. In (22) we conjectured a solution similar to (57) to the option backward
PIDE in (21), which is exactly the same PIDE as (58). Using the same bound-
ary conditions as (59) and (60) we found an expression for B(t) in (30) and for
A(t) in (31).

There is only a subtle difference between the option pricing problem and the
conditional characteristic function in the terminal conditions. Note, that the
conditional characteristic function must satisfy the boundary conditions (59)
and (60), while we chose the same conditions for the option price in order to
facilitate a Fourier expansion.

For completeness let us state the conditional characteristic function resulting
from theorem 3:

Theorem 4 The conditional characteristic function of random variable Xt is
given by

&(X,,t, T, k) = exp (A(t) + ike‘”(T_t)Xt) (61)
where
k%%, A
_ —2k(T—t) _ A 2 2k(T—t) 2y 2 2
A(t) (e D+ [m(n e TR —In(p? + k )}
— MNT —t) —ia k(e "T=D —1) (62)

Before we continue, let us check the conditional characteristic function by
the correspondence principle. We derive the conditional characteristic function
for three special cases and compare them successfully with a reduced version of
(61).

From the definition in (56) we see the characteristic function for k = 0 is

d( X4, t,T,0) =1 (63)
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For k = 0 we get A(t) = 0 and equation (61) reduces to 1.
The special case (n,A) = 0 is a mean reverting Brownian motion, which we

denote by Xt(l). Since X:(Fl) is a normally distributed random variable and thus
determined totally by its expectation and variance, the conditional characteristic
function of X;l) is given by

k2 .
$(Xet, T, k)| n)—g = XD (_QW (X;”) +ikE (X;”)) (64)

To find the expectation and variance, we can use [Bjor98, lemma 3.15, propo-
sition 4.3], which yields

E (X:S})> = a4 (z — o) e TD (65)
var (X(T1)> = ; (1 — e_QK(T_t)> (66)

Combination of (64), (65) and (66) gives the same as reducing equation (61):

2 2

(X, t, T, k)|(7h>\)=9 = exp < k4z (1 — e*21-:(T7t)) + ik [a* + (2 — ) en(Tt)})

(67)

The final special case we consider is (k,a,0) = 0, which is a pure jump

process. If we take x; = 0 and use the Lévy-Khintchine formula (see for example
[Bert96]), the conditional characteristic function is:

o0

(Xi,t, T k)| (. .0)—0 = €XP ( / MT —t)(e*™ — 1) fy(m)dm) (68)

— 00

where fy(m) is the density function given by (13). If we assume, as before,
p=q= % and 1 = n; = 19, substituting the density function into the integral
gives:

AT — t)k:Q)

¢(Xt, t, T7 k)‘(m,a,o’)zg = &Xp (_ ']72 + k2 (69)

This equation also comes out from a reduction in (61).

5.3 Empirical characteristic function

To create an empirical characteristic function, we use data series from the Dutch
spot electricity market APX. We use the daily average APX price from January
2001 to July 2002 in order to avoid the daily pattern as we have seen in figure
3c. As we mentioned in chapter 1, the market was partially regulated before
January 2001 with totally different market behavior from the regulated market.
This led us to the choice of using data starting January 2001. The time step is
thus At = 1 day implying all parameters will be estimated per day.
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The regression of mean reversion parameter
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Figure 14: Scatter plot for APX baseload: difference of consecutive log APX
prices versus log APX price

Transforming the SDE in (12) via X; = In Sy, shows the expected value of
dX;, denoted by E(dX;), satisfies

E(dX,) = r(a* — X,)dt (70)

This equation shows a linear regression between the difference of consecutive
logarithmic prices dX; and the logarithmic price X;, will yield an estimate for
both x and «o*. In figure 14 we show a scatter plot together with our regression
line. From the figure it is clear we get a stable estimate of o* (3.39) and an
unstable estimate of x (0.262).

Now let us look at the conditional density function, which can be found via
the Fourier inversion formula (see e.g. [Duff00, equation (1.4)])

1 [~ _,
p(XtJrl'Xt) - / e_lkXHl(b(Xtﬂ Lt + 17 k)dk (71)
T Jo

Inserting the functional form of ¢(X, ¢, ¢+ 1,k) from (61) gives
1 [ . -k
p(Xt+1|Xt) = ; / exp (A(t) — Zk[Xt+1 — e Xt]) dk (72)
0

where the dependency on X;11 —e "X, is clear (see also the remark at the end
of this section.)

Given the value for x, we have created the empirical characteristic function
in the following steps:

e Given the time series of X; and an estimate for k, create the time series
X1 — e Xy
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The empirical (o) and the theoretical (+) characterictic functions
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Figure 15: The absolute value of the empirical and matched theoretical charac-
teristic function

e Determine a histogram by means of Matlab and assume this to be an
approximation for the conditional density function p(X;11|X;)

e Determine a conditional empirical characteristic function, denoted by
d(Xy, t,t+ 1, k), via the definition:

o0

d(Xe, t,t+1,k) :/ RN p( Xy 1] X)X 41

oo

The three remaining parameters o, 7 and A are estimated by a naive mini-
mization of the absolute difference between the empirical and theoretical char-
acteristic function. We solve the following minimization problem:

min /Oo (167™ (X0, t, T, )| — | (X0 t, T, )| ) (k) dk

A J o

where we have chosen weight function w(k) =1 for all k for convenience.

The Nelder-Meade simplex algorithm can solve this non-linear least squares
problem and provides our parameter estimates. This specific algorithm is readily
available in Matlab. In figure 15 we show the empirical and matched theoretical
characteristic function for our data set. It can be seen the center is matched
quite well, while the tails contain small errors. This can be attributed to the
amount of points we used in the Fourier transformation. Taking a larger number
results in a better fit. In table 1 we show our results of the parameter estimation.

The presented parameter estimation is a two step method. First one deter-
mines k (at the same time leading to an estimate for «*), which forms an input
for the estimation of the remaining parameters.

To investigate the impact of x, we have run the second step of the estimation
for different k. Instead of the correct estimation 0.262, we put in values 1.7 and
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a* K o A n

2001-2002 | 3.39 | 0.262 | 0.090 | 4.27 | 15.8

Table 1: Estimated parameters for daily average APX base load 01/2001-
06/2002

2.7 and found the estimates are changing considerably. Remarkable is the drop
in the error if x increases. This might be attributed to the fact we have not
chosen an optimal weight function in the minimization or to the fact we have a
two step method.

K o A n error
0.262 | 0.090 | 4.27 | 15.8 | 0.042
1.7 0.28 | 1.13 | 2.30 | 0.016
2.7 0.37 | 1.77 | 2.03 | 0.010

Table 2: Parameter estimates for different

Remark Note that taking logarithmic price differences to find a conditional
density function only yields correct results for k = 0. The moment one assumes
a mean-reverting process, Value-At-Risk calculations should thus be based on
the adjusted logarithmic price difference: X;11 — e " Xj.
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6 Conclusion

Deregulated electricity supply markets are no longer unique in the world. Many
countries already have, or are in the process towards, deregulating their elec-
tricity market. In this report we took the Dutch spot electricity market as an
example and show prices behave different since deregulation. We find mean
reversion and jumps are two important characteristics of the prices.

Describing spot electricity prices in a model gives insight in the risks involved
in energy trading and shows a way to valuate electricity contracts. From the
proposed models in the literature, we believe jump diffusion models and regime
switching are most tractable. In this report we extended the double exponential
jump diffusion model originally due to Kou & Wang in [Kou01] with mean-
reversion.

We use this model to valuate a European put option on the spot electricity
market. First a pricing equation is derived in PIDE-form in (14). Because
electricity is non-storable, one cannot use no-arbitrage arguments to valuate
the option. There is no general way around this problem, which can be seen
as a weak point of all jump diffusion models. We chose to work with a zero
convenience yield to stress there is no risk free portfolio available. Moreover we
decided to calibrate our model to the most liquid option in the APX market
to avoid the choice of an arbitrary utilityfunction. This calibration is done by
changing the estimated jump intensity parameter A to an implied value. In our
case the value changed dramatically from 4.27 to 0.20 - 103.

Fourier expansion gives a way to find a numerical solution to the PIDE in
terms of five different parameters. We have tested Finite Difference - Finite
Elements method, which however seems to be unstable. We estimate these
parameters by matching the theoretical characteristic function to the empirical
one in a two step procedure. First we estimate mean reversion parameter k,
which is then used as an input to the estimation of the other parameters.

We confirm a result by Barz that jump diffusion models seem not appropriate
for pricing options longer than a few weeks out as the option price under these
models converges quickly.

The given approach is not restricted to European put options. We believe it
can be extended to incorporate a more complex pay-off as long as the Fourier
transform of a pay-off exists, we will be able to price the European option. To
valuate Asian and American options asks for additional research.
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Inner product convolution and test function

In this appendix we give detailed expressions for the convolution given by (55)
and its inner product with the test function =(z,&.,d). Introducing different
expressions for the convolution, reduces the length of the formula’s and can help
to gain computational speed.

Due to the different Heaviside functions in the basis functions, see (40),
(41) and (42), it is worth considering four different regions of the convolution
dependent on the position of the observation point z compared to the center
of the segment &, and width of the segment 6. We introduce Ki(x,7) to
K14(xz,7) depending on the relation between z, § and &, as in

e Forx <§, — 35

K’(/Jl(Z,T)

) For§n—%<x<§n

Kio(x,T)

+

+ o+

oFor£n<x<§n+%

Kz (x,7)

. Fora:>£n+%

K’l/)4(ﬂf,7‘)

+

YA
Z _(e7=2 )[40V + 202 + 24

2nd
6%(5 204260) 20(D) — 20 — yga(?)]
FOH20=26)[94(1) _ 9 3) + 16a®)) (73)

DY
Z T —71( z4+E€n) [— 4a(1) + 2(1(2) + 2(1(3)}

n

o2 5+2L 260 (201 — 24 — p6a)]
~3(5420-26) [24(1) _ 9) _ 53]
4z — &allal — al)] + 2ndal)) (74)

N ooy
A n(z—&n) 4 (1) (2) + 3
2312775@ K [~day” + 2a3 2a,7]
eg(—6+2m—2£n)[2a(1) - 2a£,2) - n5a53)]

67%(5+2m—2§n) [2agll) _ 2a513) _ 7]5@513)]
dnfz — &a)[—all) + alP] + 2ndall)) (75)

SN
722775 == [_ 40D 1 242) 4 2]

e2 (0720426 190D _ 942 _ p5a ()]
e HE 0 20)) —psa®)) (70

40



Note the test function Z(x, &, d) reduces in the area (£, — g, o+ %) to

i=bctd  yfe _S<a<e,
dolz) = b5 . 5 (77)
TR g <a<E+ )

Since taking the inner product of the convolution with the test function
H(x, &, 0) yields a large expression, which does not give extra insight in the
material, we refrain from inserting it into this appendix. Instead, we provide all
five different possible overlaps, which can occur due to the difference between
the position of the center &, of Z(z,&.,d) and the center of the convolution &,.
To conclude this appendix we give the five overlaps.

e Overlap 1: & > &, + g

€e — 3 €et+g e 9
2 [ Ko = - [ Kot T R (19
gc_j

c

Overlap 2: . =&, + g

£e — 4 Eetg S
2 ) ng(x,r)H%dfo/ Kv,/;;;(x,ﬂ“#dx (79)
¢

c

Overlap 3: £. =&,

€e — [ ets —e 3
2 [7 Kol s [ Ko T 20 (s0)
£C_§

c

Overlap 4: & =&, — g

3 _ ) Eotd e 8
2 [ Ko™ - [ Ko T e 1)
gc_j

c

Overlap 5: & < &, — g

€e — 3 Eets —e -9
2 [ Ko = o [ Koo T (3
§e— 5 .
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